
Fermi National Accelerator Laboratory

FERMILAJSConf-92021-E

Tutorial on Neural Network Applications
in High Energy Physics: A 1992 Perspective

B. Denby ~;:~.

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

April 1992

Invited tuorial to be published in the proceedings of the Second International Workshop on Software
Engineering, Artificial Intelligence and Expert Systems for High Energy and Nuclear Physics, La Londe les
Maures, France, January 1992.

= Operated ty Universities Research Asscciation Inc. under Contlact No. DE-AC02-76CH030M) tih the United States C-apartment of Energy

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States
Gouernment. Neither the United States Government nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or fauoring by the United States Government or any
agency thereof The views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or any agency thereof,

FERMILAB-CONF-92/121-E
CDF/PLJB/CDF/PWLrc/1737

TUTORIAL

NEURAL NETW,“,“, APPLICATIONS
IN HIGH ENERGY PHYSICS:

A 1992 PERSPECTIVE*

BRUCE DENBY BRUCE DENBY
Fermi Nation& Accelerator Laboratory Fermi Nation& Accelerator Laboratory

M.S. 318 M.S. 318
Batavia, Illinois 60510 USA. Batavia, Illinois 60510 USA.

denby@fnal.bitnet denby@fnal.bitnet

Feed forward and recurrent neural networks are introduced and related to smdard data analysis
tools. Tips are given on applications of neural nets to various areas of high energy physics.
A review of applications within high energy physics and a summary of neural net hardware
statlls are given.

Dutline of Pu

1. Architectures
I .l Feed Forward Networks

I .I .I Event Selection
I .I .I .l Example I - Square Root Net
I .I .I .2 Example 2 - Tau Particle Selection
1 .l .I .3 Example 3 - Secondary Vertex Selection

1 .I .2 Function Mapping
1.1.2.1 Example I - Sin(x) Net
1 .I .2.2 Example 2 - Drift Chamber z Position

I .2 Recurrent Nets and Tracking
I.2 .I Tracking with a Recurrent Net
I .2.2 Improvements to Tracking

1.2.2.1 Rotor Tracking
1.2.2.2 Elastic Tracking

2. Tips on Applying NN in HEP
2.1 Choice of Variables

2.1 .l Ofline Applications
2.12 Trigger Applications

2.2 Training
2.2.1 General Comments
2.22 Neural Network Software Packages
2.2.3 Low Level Pattern Recognition
2.2.4 Physics Process Determination
2.25 Example of a Hybrid Application -Isolation

3. Survey of NN Applications in HEP
3.1 Track Segment and Vertex Finding
32 QuarWGltwn Separation

* Invited tutorial presented at the Second Infernntional Workshop on Software Engineering. Arrifciol
Intelligence, and Experf Systemsfor High Energy and Nuclear Physics. La Lmde les Maures, France, January
1992. To be published in the proceedings.

3.3 Kink Recognition
3.4 An Assortment ofBackprop Approaches
3.5 A Few New Approaches

3.5.1 2 Branching Ratio
3.5.2 Resonance Search
3.5.3 Mass Reconstruction
3.5.4 Non-Backprop Applications

3.5.4.1 Introduction
35.4.2 Jet Identification with Topological Map

4. Neural Network Hardware
4.1 Introduction
4.2 Current Hardware Status

4.2.1 True Analog Approaches
4.2.2 Digital Approaches

4.3 Prognosis for Triggers
5. Acknowledgements
6. References

1. Architectures
1.1 Feed Forward Networks
1.1.1 Event Selection
Normally in high energy physics ‘cuts’ are used to select events of interest. Figure 1 shows
the distribution of the variable, x, for two classes of events, class ‘a’ and class ‘b’. We
would lie to use the variable x to allow us to classify a randomly chosen event as belonging
to class ‘a’ or class ‘b’. One way to do this is to simply place a cut at x’ in the figure, and
call everything to the left class ‘a’ and everything to the right class ‘b’. The cut can be
interpreted as a step function U(x-x’) which has value 0 for x < x’ and value 1 for x > x’. In
cases where events are characterized by more than one variable, the optimal choice of cuts is
less obvious. In figure 2, two consecutive cuts, 1 and 2, on the single variables X, Y are
inefficient at selecting class ‘a’, however, a single cut, 3, on a linear combination of X and Y
is efficient. This can be interpreted as using a two dimensional step function U(aX + bY + c)
as a classifier.

3 ’

U(x-x’)
/L-&y ;5

I
X’

Figure 1 Figure 2

Figure 3 shows an even more complicated case: the boundary between the two classes is
highly nonlinear. In this case, no linear cut can efficiently separate class ‘a’ from class ‘b’.
The ideal cut would be one like the first frame in figure 3, i.e., a cuf with a curved edge.

One way to make such a cut is to build it up out of an ensemble of linear cuts. Frames 2
through 4 of figure 3 show the value over the X-Y plane of a function made by summing
one, two, and finally three step function cuts which approximate the curved edge cut we
desire. In frame 5 we simply subtract 2 everywhere in the plane, and in the final frame,
apply a final step function to the result. The function we have constructed is thus:

D = U(U(alx + bly + cl) + U(a2x + b2y + c2) + U(a3x + b3y + c3) -2)

This function has value 1 in the region containing the ‘b’ events and value 0 elsewhere; thus,
it approximates well our desired nonlinear discriminant function.

o(aZx+bZy+cZ)

We can represent this function diagrammatically as in figure 4. The input variables x and y
get multiplied by the coefficients al, b2, etc. stored on the lines connecting units together.
Summation occurs at the inputs to the step function units. The outputs of these units are
again multiplied by coefficients, in this case 1, before the final summing and thresholding.

,~~~

J-

9
-2 J- y ‘1

cPw

C’ c2

c3 a, 82

Thresh. (!kJ b8

Input “allab

Fig. 4. Discriminant Function Architecture Fig. 5. Sigmoid Function

Figure 4 looks very much like a standard three layer feed forward neural network. In the
language of neural networks, this one has two units in the input layer, one each for x and y,
three units in the hidden layer (represented by the step function units), one unit in the output
layer which produces the final discriminant function, and one ‘bias’ unit, labelled ‘thresh
for producing offsets. ‘Units’ are also called ‘neurons’. The coefficients al, a2, etc. form
the matrix of neural network weights, w&i), where ij am the indices of neurons. In a feed
forward neural network, each neuron performs the function tj = o(& w&i) ti) where t is the
output of a neuron, wfj,i) is the weight from neuron i to neuron j, and o is the neuron

transfer function; in fig. 4, this is just the step function U. The difference between figure 4
and a standard neural network is that in the neural net, the hard step function U is replaced by
a smoother, sigmoid transfer function as shown in figure 5.

The reasons for the sigmoid transfer function are twofold. First, the standard training
procedure for neural networks, backpropagationl, requires that the derivative of the neuron
transfer function exist. Neural networks can be trained, i.e., a data set which has already
been classified, Monte Carlo data for example, can be used to derive the best values for the
w(i,i). If the initial values of coefficients, al, bl, etc., are not quite right, backpropagation
allows us to make corrections by varying the weights slightly and seeing the effect on the
error the net makes. The sigmoids ensure that the ‘error function’ (defined below) varies
smoothly rather than jumping from one value to another as would happen with a step transfer
function.

The error function, E, is the sum over the network output units and over a training sample of
the deviation of the output values from their desired values. Gradient descent (a minimisa~on
procedure) is then performed on this function with respect to the weights in order to minimise
the deviation of the network response from the desired response. We have:

E =cp E(P) = cjp [dW-tW12

where p is the index of an input pattern (i.e., an event in the training set), j is the index of an
output neuron, d(pj) is the desired output of neuron j in pattern p, and t(p,j) is its true
output. The gradient with respect to a weight w(i,i) from hidden neuron i to output neuron j
is then

Wp,ii) = [d(p,j)-t(p,j)lo’Ci)t(p,i)

where s’(j) is the derivative of the sigmoid function of neuron j.
input unit i to a hidden unit j, we have

If w(i,i) instead is from an

WA8 = [Ck[d(p,k)-t(p,k)lo’(k)w(kj)lo’(i)t(p,i)

where k runs over the output units. The prescription of backpropagation then is that, in each
iteration

Apwc,i) = -&E’(p,ij) + ~1* previous Apw(i,i)

where Apw(i,i) is the change in wf.j,i) for this iteration, & is the distance to move along the
gradient, also called the ‘learning coefficient’, and the term containing a, the ‘momentum’
coefficient, is a smoothing term. Note that this expression explicitly contains the derivative
of the transfer function o’(j). The total weight change is just the sum of the weight changes
for the patterns presented. In practice, the weights are often updated after only a small
number of presentations of training patterns, rather than after the whole set. This is not true
gradient descent but is easier to implement and seems to work well. Typically several passes
through the training set are necessary before E is minimised and a good set of w(j,i) are
obtained. The minimum of E is only a local minimum, and different results may be obtained
if a different set of starting weights is used. Normally, though, overall performance is
reasonably independent of the initial weights.

Quality of training must always be judged based on performance of the network on a data set
which is independent of the training set. Otherwise there is the danger of overtraining, in
which the network begins fitting to noise in the training set. This is discussed further in
section 2.2.1.

The second reason for the sigmoid is that for overlapping classes, the sigmoids can be used
to approximate the probability of an event belonging to one class or another. The optimal
classifier which takes into account the probabilities of an event belonging to one class or
another is called the Bayes classifier 2. In such a classifier, the ranges of the input variables
are finely binned, and the probability of an event in a particular bin belonging to, say, class
‘a’, is equal to the number of events in class ‘a’ in that bin divided by the total number of
events in the bin. How does this relate to the neural network output? Recall that during
training, an error function is minimized3:

E = 2 (t(i)-d(i))2

E E x oa Pa(i) (t(i)-l)2 + ob pb(i) (t(i))2

for two classes ‘a’ and ‘b’, where the desired output is 1 for class ‘a’ and 0 for class ‘b’, and
where Cca and ob are the fractions of classes ‘a’ and ‘b’ in the sample, Pa and Pb are the
probabilities for an event i to belong to class ‘a’ and ‘b’ respectively.
approximation valid in the limit of a very large training set.

The second line is an

t(1) and set each term to zero we get:
If we differentiate with respect to

Cia Pa(i) (t(i)-1) + ob Pb(i) t(i)= 0

t(i) = CLa Pa(i) / (CZa Pa(i) + ob Pb(i))

t(i) = na / (na + nb)

That is, the function t(i) which minimizes the error function is that which maps each event
onto its Bayesian probability to be in class ‘a’. Because a very large number of bins is
sometimes required, a true Bayes classifier can be difficult to construct and use. The neural
network will do the best job it can if the network output can be made as close as possible to
the Bayesian probability. It can be shown that a three layer feed forward neural network
trained with backpropagation approximates a Bayes classifier2; the accuracy of the
approximation depends upon the number of hidden units, but normally a relatively small
number is sufficient. We can now extend the ideas in figure 3 to the case of continuous
valued sigmoid neurons. Rather than simply selecting a particular region of input variable
space, the output of a feed forward neural network, constructed out of the sum of sigmoids,
approximates, over the volume of input variable space, the probability of an event’s being in
each class.

1.1.1.1 Example I - Square Root Net
The coefficients al, bl, etc., and thus the ‘orientations’ of the cuts, are determined from the
data during the backpropagation process. It is instructive to see where the hidden units end
up in a toy problem which was trained with backpropagation. The 5 hidden unit network
shown in figure 6 was trained to recognize when its two inputs X and Y are related by Y =
sqrt(X). The output should be 1 when this condition is satisfied and 0 when it is not. It is

interesting to note that a linear classifier (a cut on a single linear combination) will fail
miserably on this problem.

Figure 7a shows the curve we are trying to select, isocontours of the trained net output, and
lines labeled to indicate the hidden units they represent. Figure 7b shows the value of the
network output over the plane. It is clear that the net has positioned the hidden units so as to
select reasonably well the region where Y = sqrt(X). With additional hidden units, it could
have done better by cutting out the regions at small X and large X where the network
currently makes a mistake.

Figure 6. The sqare root net.

1.1.1.2 Example 2 - Tau Particle Selection
Figure 8 shows a two dimensional classification problem drawn from high energy physics3.
A network was trained to choose the polarity of tau particles from their decay angles, psi and
phi. Figure 8a shows the distribution of decays for positive helicity, 8b for negative helicity,
and SC the decision boundary found by a neural network with 4 hidden nodes. Shown also is
the decision boundary of a Bayesian classifier for this problem.
very well the Bayes classifier.

The neural net approximates

1.1.1.3 Example 3 - Secondary Vertex Selection
Another example of event classification in a two dimensional space in high energy physics
comes from the study of secondary decay vertices in the NAxx experiment at CERN (see
figure 9)4. The silicon microstrips measure the trajectories of particles from primary and
secondary vertices. Associative memories give a list of the track parameters, D (impact
parameter), and phi (track angle) for the tracks in each event. The track parameter list can
then be used to try to identify whether the event contains a secondary vertex. The study
shown here is based on Monte Carlo data, but the motivation is to assess the feasibility of
using a hardware neural network in a trigger to find secondary vertices online. Figure 10
shows the distribution in D-phi space of the tracks for three signal events (i.e., containing
secondary vertices) and three background events. The signal and background are not very
different but the signal events are somewhat broader in D. Two position independent
moment variables, hO2 and hl1 were chosen, where

qo2 = l/M 2 (D-Do)2 and rlll= l/M z (@$“)@-Do)

and Do and @o are the mean values of D and phi, and M is the number of tracks. Figures 11
a and b show the distributions in qO2 - q 11 space of the signal and background events. Note

L. . 0 . DD.OII ‘D0~0~000~~

.

.....................

4..:

.....................

...................

....................

....................

s

.....................

.....................

......... ‘oDo~o~oD~oc

...... DD~oDDooo~ooooc

. . a ‘.3D~~oooooo~oooc

. . . o’~aooooDooooon[

. , a o,n 0 q p n, 0111 II u -1
-0.75 -0.5 -0.25

L1.l.
0 0.25 0.5 0.75

Angular distribution for a T- with negative h&city. Anylm distribution far a T- with positive h&&y

Figure 8a. Figure 8b.

-:{I, :;;E
0.25 0.5 0.75

c44

i

Figure 8c.

Dound between the two zone3 earrespondig to different helicities found by
the nmral net (dashed line) and the Bnyesian method (solid line).

the logarithmic scale. Table I shows the classification results, based on a test set of 2400
events, for a neural network trained to tell signal from background based upon the two
moment variables.

nicrostrip orientatiorX-y X y X y X y

Figure 9. NAxx layout and readout scheme

Table I

Neural Network
Nearest Neighbor

Pf Pm
7f2400 461/2400

27/2400 523t2400

Pf is the probability of calling a background event a signal event and Pm is the probability of
calling a signal event a background. Since the background is many times mom common, it is
important to keep Pf as small as possible even at the expense of increasing Pm. In Table I,
the neural network result is also compared with a standard nearest neighbor classifier2; the
network performance is better.

Figure 12. Net to make sin(x) from x.

,
T!
i

x:i,-fi;q7
0.

.

.*

f
1 i i I . f i ; 17

I
2 : i ,

”
E 1 : i (

i

El
i
1 I i ; 7

i

g i : 7)

1.1.2 Function Mapping
Neural networks can also be used to map inputs into functions of the inputs. In this case the
role of the hidden units is rather different. It turns out that the network, during training, uses
the shapes of the sigmoid units to build up the desired function.

1.1.2.1 Example I - Sin(x) Net
A simple example of this is taken from reference 5 in which a network with 5 sigmoid hidden
units was trained to map x to sin(x). The architecture used is shown in figure 12. The
network was aained with backpropagation. Figure 13 show the function of each of the 5
sigmoids in building the final sin(x) function. Most of the work is done by three sigmoids
which have been translated to form the bumps in the sin function. The remaining two hidden
units just correct for small variations.

.+8 I
, ,

,
~.- -. .*

l ****~ y (“-& I.*,,* /* __.-----.._.. ,*
yj- E I , ,/./4p

-pi 0 Pi
Figure 13. The function of the hidden units for sin(x) problem.

1.2.2.2 Example 2 - Drift Chamber z Position
A second example of function mapping with neural networks is a high energy physics
application: determining the z position of a track which passes through a drift chambeh.
The position perpendicular to the wire is well determined by the drift time, however, induced
charge in cathode pads must be used to infer information about the position along the wire, .z.
The geometry of the chambers is shown in figure 14.

SenSe yjp5z=J::-; pads
4 b

10.15cm
Figure 14. Drift chamber geometry

The pads are etched in a diamond pattern as shown in figure Ea. When a particle passes
through the chamber, the avalanche induces differing amounts of charge on the inner (qa) and
outer (qb) pads.

I
w qb

\
sense wire

Figure Da. The cathode pads.

The relationship between qa, qb, and z has been measured and is shown in figure 15 b. The
empirical functional relationship is:

z = -.136 + sqrt(405 + .7l(qa-qb)/(qa+qb))

Timing information tells which cusp of the function we are in; then, the charges can be used
to get the final value of z.

qa-qb

Figure 15b. Charge ratio as a function of z

In this application, a feed forward net with five hidden units was trained to calculate the ,r
function from the two charges qa and qb. Once the weights were determined, a circuit was
built to execute the network, in which the weights were represented by resistors. The circuit
is shown in figure 16.

sb
IOL 1011

$iil b1.l .I2 i
,r.ns,l(on m3004

Figure 16. The pad net circuit.

Figure 17 shows a comparison of the z value calculated online by the neural network (using
real pamcles) with that calculated offline using the two charges, which were digitized and
stored on each event along with the neutal net output. The relationship is quite linear.

d-‘@-
r

_. -*’
-.’

_ e.4
.s* _..*

2QQO L ,-,..' .*
._ *.

. , ..

1500 r . ., .' *-' -.

1000

500 I I I, I I I I, I I I,, , , , (, , , , , , , , , , , , , , , , , (, , , , , , , , ,
0 1 2 3 4 5 6 7 8 9

Figure 17. Neural Net position (counts) versus offline position (cm.).
3

1.2 Recurrent Networks and Tracking
The basic recurrent network architecture is shown in figure 18. The neuron outputs are fed
back into the inputs. Recurrent networks have dynamical behaviour, with activation values
settling to fixed values after a few cycles through the network. If we choose the connection
strengths to be symmetric, i.e., wij =wji, and non-diagonal, then an energy function, E = -
l/2 S wij oi oj, where oi is the output of neuron i, is constantly minimized as the network
evolves.
solution.

A clever choice of the wij can produce networks that evolve to a desired steady state

equations:
In practice, the evolution of the system is obtained by iteratively solving the update

r dui/dt = cj wij oi - ul ; oi = sigmoid(ui).

On eat iteration, dt is kept<< t, the time constant of the system.
I
I

I

--- -_____.

0 0 0 0

Recurrent Network inputs

Figure 18

1.2.1 Tracking with a Recurrent Net
The most common application of recurrent networks in high energy physics is for track
reconstruction, using an algorithm developed by Denby and independently by Peterson798.
In this application a neuron is defined to be a directed link between two hits in a tracking
detector. The weight connecting two neurons i and j is determined by the angle qij between
them, (figure 19):

wij = A cosnClij/lilj

where li and lj are the lengths of the neurons (i.e., distance between hits), if i and j do not
both point into or out of the same point, and wij = -B if i and j am head to head or tail to tail.
The energy function will be smallest when the angles between close together neumns sharing
points are small. This favors neurons lying along smooth trajectories such as those of
particles moving in a magnetic field. The constraint term -B ensures a unique direction to the
tracks to avoid a degeneracy which prevents settling of the network.

c
9 j

a

---_

:::a

&- -::I:>
_a--

Figure 19 Neuron links in the Denby-Peterson Net

This method has now been used on real data at the ALEPH experiment at CERI@. Figure 20
shows r-phi (i.e., looking down beam line) and r-z (side) views of a Z event with all links
defined before network evolution (left side of figure), and the event after settling of the
network, with tracks found (right side). The efficiency is as good as the conventional track
reconstruction program but the neural net algorithm is somewhat faster. In this same
reference, a study was made of execution time for the neural net and conventional algorithms
as a function of track multiplicity. This is plotted in figure 21. The advantage of the neural
algorithm is shown to increase with multiplicity.

Considerable effort was needed to make the neural algorithm competitive with the
conventional al orlthm
to vectorize it 16

in execution time. Another way to speed up the original algorithm is
However, there does not seem to be a straightforward way to implement

this algorithm in the fast hardware that would be needed to make it applicable at the trigger
level. The main reason for this is that the weights (i.e., the cosnBij/lilj) must be recalculated
for each event. Also, the number of neurons and weights is high. In addition, it is clear that
the algorithm does not take advantage of all the available information, such as that tracks are
known to be nearly perfect helices. This makes the algorithm more susceptible to noise since
it will be less able to reject outliers. This algorithm, however, is very appropriate for
applications where the tracks are not easily parametrized, such as in non-uniform magnetic
field, or in the case of decays in flight.

1.2.2 Improvements to Tracking
1.2.2.1 Rotor Tracking
One proposed improvement on the neural tracking algorithm is the so-called rotor tracking1 1.
In this formalism, each hit is assigned a Potts neuron*2,
an orientation (figure 22).

i.e., a little rotor with a length and
The obvious advantage is that the number of neurons is now N

Figure 20.

Figure 21.

da
- LOtal NN time

3s time tc.7 i”itblimti0” 0, NN

,o ;- - - LcdDl time Of conventimal mime, /

/
25 - /

instead of N2, and the number of connections thus N2 instead of N4.
between the rotors is defined to be:

E = -l/2 x si.sj/lrijlm+ a (si.r$2firljlm ,

The interaction energy

where si and sj are the Potts variables, rij is the vector between hits i and j, m is a constant of
order 2-5, and a is a constant to be determined empirically (figure 22). The fmt term tends to
align the rotors with one another, and the second term tends to make a rotor point at its
neighbor’s pivot point. The equations of motion, which must be solved iteratively, are:

Ui = -dE/dsi si = ui/luil sigmoid(luil)

followed by a ‘greedy’ algorithm11 to select the links nearest the rotors.

Figure 22. Rotor Neurons

The result of trying this method on a toy problem is shown in figure 23. Unfortunately, the
interference between neighbors spoils the results for anything beyond toy problems. Further
improvements are being worked out.

1.2.2.2 Elastic Tracking
A second improvement to the neural tracking is in the so-called elastic tracking13 or
deformable templates14 approaches. In these approaches, a track is a helical object which
settles into a shape which best fits the hits. The helix can be thought of as electrically
charged and amacted to the hits which have opposite charge. Although these algorithms map
the nackmg problem onto dynamical systems, and are at least in principle parallelizable, they
have lost some of the ‘neural’ flavor of the original Denby-Peterson net. Nonetheless, the
efficiency and robustness to noise of the elastic methods are excellent. Figure. 24 shows the
result of applyin
interesting study15

a set of ‘elastic arms’ to a simulated event in the Delphi TPC. One
compared the robustness to noise of the standard ‘roadtinder’ method, the

Denby-Peterson net, and the elastic tracking method. Figure 25, from this study shows the
efficacy of each method as a function of number of tracks. All data have 20 percent noise and
3 percent error on position measurement. The madfinder breaks down between 5-10 tracks,
the Denby-Peterson net at lo-15 tracks, but the elastic tracking always finds the correct
answer.

2. Tips on Applying NN in HEP
2.1 Choice of Variables
2.1.1 Offline Applications
For offline applications of neural networks in HEP, it is advisable to choose input variables
which arc relevant to the problem from a physics standpoint. For instance, for quark/gluon
separation, jet shape variables might be chosen due to theoretical ideas about color charge, or

from experience in electron-positron collider experiments. The reason for this is that,
although a network can be trained to calculate any variable from whatever input variables one
decides to use, if one has a priori knowledge, much can be gained in terms of network
complexity, training time, and number of examples. It is also true that if the ‘intelligent’
variables do not enable to separate two classes, then ‘unintelligent’ variables pmabably will
do no better. If on the other hand the intelligent variables do prove effective, subsequent nets
can still at that point be used to calculate them from raw quantities if, for instance, it is desired
to try to incorporate the decision making into an online trigger.

The network should always be kept as small as possible to ensure adequate training,
especmlly tf the training set is small. As a rough rule of thumb, for a net with 10 inputs, 10
hiddens and 1 output, about 2000 examples are required. It may be tempting to include as
many variables as possible in hopes that the network will find some ‘secret’ correlation that a
human could not. It is better, though, to begin with intelligent variables and after some
separation appears, to try adding additional variables to see if they help. Very large fully
connected networks can have problems with training convergence. For large networks, it is
advisable to use structured networks with local receptive fieldssl.

2.1.2 Trigger Applications
In the case of the trigger, input variables must be strictly limited to those which are definitely
available at the trigger level and with the accuracy available at the trigger. It is no good
designing a trigger which operates in 1 nanosecond if 3 seconds of Vax time arc needed to
calculate the inputs to the trigger. Projects involving neural nets for triggering are best done
in conjunction with people who are intimately involved in the triggering of the experiment in
question. It turns out that most triggers were built using tricks to make them more buildable;
for instance, coarser granularity, time multiplexing of signals, multihit capabilities, special
readout schemes. These can make just getting the signals to the neural net a formidable task.

Consider the level-2 trigger for the CDF experiment. Three neural network calorimeter
triggers are being planned for the 1992 run of the CDF experiment at Fermilabl%lo (one of
these will be discussed in more detail in a later section). All will operate on clusters of energy
found in the calorimeter, where each tower is represented by an analog voltage. In principle,
the system is a ‘single chip solution’ since the pattern recognition necessary for triggering is
available on a single neural network chip. Nevertheless, it has been necessary to build
special signal tap cards to extract the signals from the existing trigger and bring them to
special new matrix shifter boards which allow a cluster found by the cluster finder to be
selected and presented to the neural network. Two additional control boards are also
necessary to coordinate the timing of the trigger. In the trigger, calorimeter towers arc
ganged together into coarser towers which are used in the trigger tower array in order to
provide a manageable array of 24 by 42 trigger towers. Finally, the use of analog voltages
implies a limited precision on the energies.

These compromises limit the effectiveness of pattern recognition which networks might be
able to do. For instance, most of the information on the lateral shape of electromagnetic
showers is lost due to the coarse granularity. This information, if available, would have
allowed the network to do very good electron identification in the trigger. Future triggers
may be able to make use of such information.

2.2 Training
2.2.1 General Comments
A number of hidden units incommensurate with the size of the training set can lead to
overtraining of the network, i.e., the net will begin to memorize the training set and will not
generalize well. The indication of overtraining is a network which continues to improve in its

performance on the training set but whose performance on an independent test set begins to
deteriorate. This is analogous to fitting a curve to a set of points. If the function used has
many parameters, it will always be possible to fit exactly to all the points, including noise
points. The curve found, however, will interpolate poorly between the data points if the true
parent curve was actually a simpler, smoother function.

Even when great care is taken, limited training set size can be a problem. In reference 17,
fifty-five input variables were used to attempt to separate hadronic top events from QCD
background. Three hundred neurons were used in training. The result was that, because
there was not enough data to adequately train the network, the net performance was 4 times
worse than that obtained using a simple linear discriminant. It is unfortunately the case that
even though the neural net is a powerful classifier, if it is not possible to generate a
sufficiently large training set for the net, the network will not be trainable and will perform
poorly. A simpler, linear classifier may do better even with its known limitations.

2.2.2 Neural Network Software Packages
The easiest way to begin to learn about neural networks is to play with one of the commercial
packages which have nice graphics and user interfaces. MimeNice from the Mimetics
Company18 and NeuralWorks Professional II from NeuralWare Inc.19 are good.
BrainMaker from California Scientific Software 20 and DynaMind from NeuroD namX21
have the advantage of interfacing with the Intel INNTS Development System J 2 for the
ETANN chip which we will discuss later.

Most of these simulators are written in C and the source code is not always available. Up till
now, most of the applications in high energy physics have been done using homemade
simulators written in Fortran, such as the Fermilab simulator 3 and the Lund simulator 2
JETNET24.

2.2.3 Low Level Pattern Recognition
Neural nets can be used to find low level patterns in detectors, such as clusters, tracks, etc.,
Normally, clusters and tracks arc fairly well understood objects, and if the detector simulation
is well understood as well, there will be no problem in generating enough data to train a
network to recognize them. In many cases, real data will be available, e.g., from a test beam,
for training. Some examples of these types of applications will be given later.

2.2.4 Physics Process Determination
In contrast, if the pattern recognition consists of recognizing a particular physics process
which may or may not be present in an event, the situation is much more difficult. Often it is
a rare, as yet unseen process upon which one wants to trigger. In this case, since the process
has never been seen, one doesn’t know exactly what to look for. The training set in this case
must of necessity be based upon models of the process. The effect of this model dependence
of the training is difficult to assess.

It may seem attractive, in order to reduce dependence upon Monte Carlo data, to use real data
as the background sample in the training set, since usually backgrounds are much better
understood. This however is dangerous since if, in the training set, some events are Monte
Carlo (the signal) and some are real data (the background) the network may find a way of
distinguishing Monte Carlo data from real data which has nothing to do with the desired
discrimination between signal and background.

It is thus ‘safer’, when trying to create a discrlminant, to use Monte Carlo both for the signal
and the background. Here again, though, any results will be dependent upon the model

c,

/ a’

- .S-

*
=*

+- +-
a-

+=-
-ie +-

e-
-B-

I

.e-

se

i

1

e- es-+- 2
ZJ

+- $5
* .g

8-q
-8- ?

I

1, I I I j

Figure 25.

used. This is perhaps the most serious problem to be faced in the use of neural networks in
physics process determination. Any algorithm based upon Monte Carlo will be model
dependent, but because a neural network stores the parameters of its discrimination process in
a matrix of weights, interpretation of this dependence may be much more difficult. Not
enough work has been done to determine how to understand the model dependence when
using neural networks.

Another ‘disadvantage’ of neural networks is that a relatively large amount of training data is
required in order to assure good generalization. Thus, a great deal of Monte Carlo data must
be generated to assure ade uate training. Sometimes the generation of this data is quite time
consuming, as was seen in 7 Here, the QCD multijet background to top production took 5 9.
CPU hours of Gray X-MP/48 time.

2.2.5 Example of a Hybrid Application - Isolation
We show here a hybrid application: an isolated endplug electron trigger25. This is one of
three neural network triggers to be installed at CDF for 1992. Electrons from W decay are
normally isolated in the calorimeter. The approach is hybrid in the sense that it attempts to
select a particular physics process, namely Ieptonic decay of the W, but bases the
discriminant upon a rather low level pattern, i.e., that of an isolated electromagnetic cluster,
In the endplug, tracking is not available in the trigger, so other means must be used to bring
down the rate of background from pi-zeroes in jets. In the past, a higher energy threshold
was used in the plug for this pmpose. In 1992, isolation will be tried in the level 2 trigger to
allow the same rate at a lower threshold. As we shall see, the neural network executes
exactly the algorithm normally used offline for isolation (except that it operates on trigger
towers rather than offline towers).

The trigger operates (as will all of the CDF neural net triggers) upon a 5 by 5 cell array of
trigger tower energies. Four templates are defined as shown in figure 26. The cells have size
150 by .2 units of rapidity.

Figure 26. Isolation templates for plug electron trigger.

The dark cenual region is meant to contain the electromagnetic shower. Four templates are
necessary since the shower may spill over in to 2 to 4 towers and since the center of the tower
as found by the cluster finder may not perfectly center it in the 5 by 5 array in all cases. Each
template is represented as a hidden unit in the network. Each tower has a weight connecting
it to a hidden unit in the neural network, figure 27. Cells in the central region have a weight
of ‘frac’, and cells in the outer region have a weight of -1. Thus, the quantity presented to
the hidden units, which are used just as comparators, is

frac * Einner - Eouter

If this quantity is negative, the hidden unit will not ‘fire’: the energy outside the
elecuomagnetic shower was greater than some fixed fraction of the shower energy and the
shower is thus not isolated. If the quantity is positive, the neuron fires, indicating an isolated

cluster. If any of the templates tires, the cluster is isolated. In typical offline applications,
frac has a value of .1 to .2. The value frac = .16 was found to be optimum in the present
application.

output unit (isolation flag)

n

hidden units

weight

v ---- v v v v v v ----

= -1 or
frac

bias

unit
input units (trigger tower energies)

Figure 27. Net architecture for isolation trigger

A simulation of this trigger operating on real data from a previous run indicated a 4 fold
reduction in background while retaining 95% efficiency on electrons from W.

3. Survey of NN Applications in HEP
In this section we survey applications of NN in HEP. We have in fact alredy discussed
several: track reconstruction, secondary vertex finding, an isolation trigger, finding z
position from drift chamber pads, polarization of the tau particle, finding top amidst the QCD
background. The reports on those applications presented at this conference will be brief;
refer to the proceedings for details.

3.1 Track Segment and Vertex Findin
Several papers have covered this subject 2827 28 29 , 9 9 Here we discuss reference 27 in
which real data from a collider experiment, E735 at Fermilab, were fed to a simulated neural
network trained to find the primary vertex of the event based upon drift times in the z-
chamber, a drift chamber with three layers of wires placed near the beam pipe. Figure 28
shows the hits in the chamber for a typical event; here, only the hit wires are shown, not the
drift times. By eye, the hits seem to emerge from a point on or near the beam line.

(a) Z Chamber Event

Z Chamber ‘.. Sense Wires

I
q Hit Sense Wire

.:i:~~~.~~~~.~~~~~~~~~~~~~~~~~~.~~:~~.~~~~~~
. . .

I . . I
._.

. .
:. . . .‘.,.. .., . .:.. , .‘.,

-5Ocm f
*

Ocm +50cm
I

Beam Line
0 Track Fit Vertex

-E-TOF Vertex
. . . .“... Neural Net OuDut

Figure 28

The chamber was broken into 18 wire subsections (3 layers of 6 wires each) for processing
by the network. The 18 drift times became inputs to a three layer neural network as shown in
figure 29.

Input = 18 Sense Wire Drift Times
Output = 60 l.Ocm Bins From -3Ocm to +30cm

+ 1 Bin for Z<-30cm + 1 Bin for Z>+30cm

Tar& Distributkm:

Output Distribution:

Output Units:

Hidden Units:

Input Units:

Wire #:

. ..*...............

.

.
Figure 29

summed OI JtpUt -

--4’-

-- ---_.-.. --**
- -.

0 0 0 0 0

0 0 0 0 0

0 0 0

/ - acks sense wires
Figure 30.

250 _ I r n r r I’ 1 n n I’ i r

200 h(*., 2, - ZE 0 = 1.4cm

-10 -5 0 5 10
cm

Figure 3 1.

The output layer had 62 units, 60 representing 1.0 centimeter bins from -30 cm to 30 cm. and
2 ‘overflow’ units. The network was trained to represent the vertex position by a little

Gaussian histogram in the output units. This gives good vertex position resolution with
relatively few output units. The 18 wire subsections were chosen so as to overlap in order
not to miss tracks which may span subsections. The outputs of the subnets are then simply
added. This is illusaated in figure 30. The resulting vertex distribution is shown in figure 28
for a typical event. The neural net output is shown as a dotted line. The maximum net
output, represented by a cross, agrees well with the vertex position calculated offline as well
as with the time-of-flight (TOF) vertex. Figure 31 compares the distribution of Zoffbne-
ZNN to that that of &ffline-ZTOF. TOF might possibly be implementable online. The
neural net does much better, and can certainly be improved, while the TOF resolution can
probably not be improved.

A similar technique has recently been applied, using a VLSI neural network, to online
reconstruction of slope and intercept of muon tracks in a drift chamber2g. The test beam
setup is shown in figure 32. The setup is discussed in more detail in reference 30. Four
more online reconstructed events are shown in figure 33 which superimposes the neural net
result with that from the offline fit. Normally the net gets the correct answer. In those
instances when it does not, it is usually in cases where there are two tracks with reasonable
tits, as in the fourth frame of figure 33.

trigger counters

I
Beam

trigger
electr.

-b readout * ETANN

readout -D
motherboard ETANN output board

+ TVC’s, ADC’s 4
computer digitisation for

Figure 32.

3.2 QuarklGluon Separation
The identification of the arton ancestors of jets using neural networks has been treated in a
number of references31phy33,34. M ost of these have treated electron-positron collider data
and have used Monte Carlo data. Results are that 70 to 85% of the jets are correctly
identified. Another Monte Carlo study for the proton-antiproton collider environment, with a
crude detector simulation, got about 70% correct identification for quarks33. Reference 35
gives a result for proton antiproton collider with full detector simulation and also mentions the
effect of the trained net on real data from the CDF experiment. The real data seems to contain
components which resemble the quarks and gluons of the Monte Carlo.

ETANN CHIP YS CANARY CHAMBER TRACK FIT

SENSE WIRE * NN TRACK - - -.

DRWT DISTANCE I FIT TRACK

,NmRCEpT -&..-+. u*,

SLOPE$

-0.m.d

balm

EVENT 2 EVENT 4

ETANN CHIP “S CANARY CHAYRER TRACK FIT

SENSE MRE 0 NNTRACK-.-.-.

DRIFT DISTANCE I FIT TRACK

INTERCEPT ~.~~ . .._._._..._......... ;.;&

WJPE -a,-
+ b,.,,

EVENT 9 EVENT LO

ETANN CHiP “S CANARY CHAMBER TRACK FIT

SENSE v/IRE 0 NNTRACK-.-.-,

DRIFT OiSTANCE I FIT TRACK -

-1 0

e

SLOPE -~.uI ~;, .,.... ~,~
0.e.d

ETANN CHlP VS CANARY CHAYBER TRACK FIT

SENSE WIRE 0 NNTRACK-.-,-

DRIFT DISTANCE I FIT TRACK

\

Figure 33.

3.3 Kink Recognition
In this work36 tracks in a TPC are examined to try to determine whether they are particles
which have decayed and therefore contain a ‘kink’. Two approaches are tried. In the first,
the track is fit in an inner region, 1, and an outer region, 2. The track parameters in the two
regions are used as input in to a neural network which tells whether or not this track is due to
a decay. In the second approach, a single fit is done to the track, and the residuals of the fit
are used as input to the neural network. Both of the neural methods are found to have higher
efficiency than the standard chi-squared method, and are about a factor of 20 faster.

3.4 An Assortment of Backprop Approaches
Numerous groups have used neural networks for tagging of B quarks. Typically this is done
for electron positron colliders 37~38,39140,4I although some work with jets at hadron
colliders has also been reported15. A number of presentations on this subject will be found
in the proceedings of this workshop42,43,44.

Other applications include identification of Cherenkov rings using the positions of the
photons in the ring45946, and determination of the quark jet charge using the z and charge of
the leading particle in the jet.47

3.5 A Few New Approaches
3.5.1 Z Branching Ratio
Reference 48 is a very nice result using real data to do the fit high precision measurement of
the Z branching ratio into the five known quark flavors. Event topology variables such as
sphericities and invariant masses were the inputs to the neural net. This may be the first
application of neural networks that has produced a new physics result.

3.5.2 Resonance Search
This work49 comes from the E735 proton antiproton collider experiment at Fermilab. For
two prong events, the inputs to a feed forward network are the three-momenta of the two
particles, and the Z position of the vertex. The network is trained to tell ‘signal’, Monte
Carlo generated rho, K, and Lambda particles which decay to two particles, from background
simulated by same sign particle pairs. All of the particles are put through a detailed detector
simulation. When a mass plot of opposite charge pairs is made using real data, clear signals
for rho, K, and Lambda are seen (figure 34) when the events are selected by the neural
network. When no neural network selection is made, no peak is seen. Apparently the
network has learned a good combination of cuts to make to enhance the signal. No other
attempt to define a set of cuts to enhance these signals in this experiment has been as
successful.

3.5.3 Mass Reconstruction
This is another example of using a neural net to do function mapping. In this work50, proton
antiproton collisions producing W particles which decay to two jets are produced. Gluon
radiation, underlying event, and detector effects are included. Based upon the information in
a calorimeter alone, a neural network is trained to calculate the mass of the final state system.
Two approaches were tried: 1) the net is trained with all raw calorimeter energies; and 2) the
net is trained to reconstruct the mass using a set of ‘intelligent variables’, such as the di- and
tri-jet invariant masses. The intelligent variables approach is found to work much better.
Results are shown in figure 35. The neural net method is found to be superior to the
traditional method in which a fixed cone size is used to define the jets.

(4
(Iv+“‘“-)

: : ,A<,
..i oevvu* .,

(l.“*+“-“- wan,

;--::;.

\
‘:..

rr-,
J 0.. u 3.1 1.)

imnom Lurp WV/c’)

Figure 34.
a) Invariant mana distribution of r+r- pain mperposed with the cormponding

invariant MASS distribution of rtrc and r-r-. b) Invariant mass distribution of rfY pairs
rnpaposed with the corrupcmdiag invariant mass distribution of rfrf and r-r-.

5

.
! i-

B

1
1

I

J 1
i

r
__...’

I ..: i
,.&- 0

09 Ia 0,

The reconstructed mm (A&J) divided by the true mau (M&J) using the neural network
method (full lie) and the conventional “windorm method (dashed line) with R = 0.8.

Figure 35.

Figure 36a.

DWributioo of bmub Im).c-guarka (b) sc.d udmquvb (c) a Ihe aelf.o~miul7x 1

(1.11
(4

,‘,.>

l<.Sl
RI

<L.S>

#I,IJ

CC) 11.n

on

Figure 36b.

x 2 7 /

7 f 7 /

,* /,A-

. x /A

/ ///

, 9 -“I!?

* /A/

Tb.3 m*t MtO” wnnpmdin~ u) the 1 ludll hdroll8 for same of Ihe unit9 in th* ru-
orpaid~ netrat; bjtU (a). c-jets (b) and u&j- (c). The m mmpmt h ks mdtiplld
hr l huor of 6 rrk,ire lo the p, campor,cc,t. c!ac.l.iiMt~ rdu to at pe4ik.n in ** Inap

3.5.4 Non-Backprop Applications
3.5.4.1 Znfrodu&&
Recently some HEP applications of learning vector quantization (LVQ) and topological maps
have apueared. The reader not familiar with LVQ and topological maps should refer to the
tutorial of Fogelman61 in the proceedings of this workshop. Learning vector quantization is
a supervised learning algorithm like backpropagation and appears to give performance similar
to that of backprop. It has been used in the quark/gluon separation of reference 34 and in the
ttbar recognition of reference 17. The topological map is an unsupervised learning algorithm
and essentially performs a type of clustering.

3.5.4.2 Jet Identification with a Topological Map
In this workS2, a topological map with 49 units arranged in a 7 by 7 grid is used to identify
quark flavor in jets. Eight input variables consisting of the the longitudinal and transverse
momenta of the 4 leading particles in the jet were used as input to the topological map. The
results obtained for jet classification were similar to those gotten with backpropagation,
however, the topology of the solutions was found to give physical insight into the criteria the
network used to classify the jets. Figure 36a shows the average response of the net to b, c,
and light quarks. Certain groups of nodes are seen to be responsive to particular quark
flavors. Figure 36b shows the weight vectors corresponding to the 4 leading hadrons for
nodes which are specific to particular quark flavors. Nodes sensitive to uds quarks have
weights which favor one or two leading particles which carry most of the momentum. Nodes
for the heavier quarks favor a more uniform equipartion of momentum over the particles in
the jet, in agreement with current notions about fragmentation.

4. Neural Network Hardware
4.1 Introduction
Most high energy physicists are familiar with discriminators. A neuron is essentially a low
quality discriminator with a sluggish turn on function53 (the sigmoid), see figure 37. Linear
summing of signals is common in high energy physics: total energy, e.g. Triggers which
weight calorimeter energies by the cosine of the angle of the cell are used in summed
transverse energy triggers; thus weighted sums of energies are also common. A
discriminator cutting on, say, summed Et, is identical to a single layer perceptron, the
simplest neural network, without hidden units. High energy physicists have been using
neural networks for years without knowing it!

Figure 37.

What is new is the idea of using very dense neural networks to implement algorithms which
are more complex than had been previously thought possible at the trigger level. Since a
three layer neural network can implement any function, it can implement any trigger. Special

purpose hardware for triggers is not a new idea, but what is attractive about the neural
networks is that they are reprogrammable without modifying the hardware.

4.2 Currenf Hardware Stafus
We limit ourselves here to commercially available products and a few products from private
labs. We exclude ‘crazy’ things like acoustic charge transport in &As, which is very new,
and optical implementations which are tco slow at present.

4.2.1 True Analog Approaches
In these approaches, the neuron is built out of op-amps, synapses are ‘resistors’ or
something which acts like them, the sum of products is done with Ohm’s law and Thevenin’s
theorem. The synapses can be true resistors, multiplying DAC’s, or floating gates. An
example is the Intel ETANN chip54 which has 64 neurons and 10240 floating gate synapses.
The analog implementations are the fastest. Processing time for the ETANN is of order 1
microsecond per layer, independent of the number of inputs or hidden units. The analog
chips are less precise than digital ones. The ETANN has the equivalent of only about 6 bits
of precision.

Another analog chip which is even faster is the ANNA chip from Bell Labs55. It has 4096
synapses which can be configured as 16 neurons with 256 weights each, 256 neurons with
16 weights each, or anything in between. The configuration can be changed on each
instruction. The I/O to the chip is completely digital but onboard processing is analog. The
accuracy on the weights is 6 bits but the accuracy for the inputs and outputs is only 3 bits.
Weights are stored on capacitors which are refreshed every 100 microseconds. Processing
takes 200 nanoseconds. This chip is optimised for local interconnects and has been used in
online optical character recognition applications.

4.2.2 Digital Approaches
The Adaptive Solutions company 56 offers a chip with the ‘processor per neuron’ approach.
Each hidden unit is a small processor with local storage of all weights connecting to that unit
(see fig 38). The inputs are presented sequentially and each hidden unit does a multiply and
add to its locally stored sum of products. This type of chip does totally digital processing.
The speed of the network depends linearly upon the number of inputs. The clock cycle of 40
nanoseconds is fast, but for a network of 100 inputs, the processing time will be 4
microseconds, slower than the ETANN.

Neural Semiconductor company57 has commercialized the stochastic pulse train encoded
synaptic weight multiply technique (figure 39). All weights and activations are stored
digitally but the actual multiply is done with the rate multiplier as shown in figure 39.
Basically the activation and the weight are input as pulse streams into an AND gate. The
frequency of the output pulse stream is the product of the frequencies of the input pulse
streams. In this case, processing is parallel but the accuracy depends on the desired precision
in the weights. For 6 bit weights, 50 microseconds is required with a 40 ns clock cycle; thus
again a digital technique is considerably slower than the analog one.

Oxford Computer Company58 produces a digital neural network chip which is essentially a
fast matrix multiply chip. It is basically a memory chip with 256 1 bit processors imbedded
in it. The processors do the weight multiplication. The processing time depends upon the
number of hidden units. Twenty microseconds is the estimate for a typical problem in high
energy physics.

1 [weight 1 [weight) m

memory memory memory memory
.__--.

multiply & multiply & multiply & multiply &
accumulate accumulate accumulate accumulate

I ’
I

I J
1

I J I
INPUT/OUTPUT BUS

Figure 38. Processor per neuron approach

Figure 39. Stochastic pulse train encoded synaptic weight multiply

4.3 Prognosis for Triggers
At Fermilab recently, a VLSI neural network has been used online in a test beam experiment
to test a muon trigger which calculates slope and intercept of tracks in muon chambers in a
few microseconds29. A neural network built of discrete components has been used fo
calculate the z position of muon tracks in the same chamber&. These are tbe first
applications of hardware neural networks in high energy physics.

The DO experiment at Fermilab hopes to follow up on the above test beam work and build a
neural net muon trigger for the DO muon upgrade in 1993/945g.

The CDF experiment at Fermilab is currently installing hardware for three neural net triggers,
and results from these should be coming out in the upcoming months.15,16.

A group at the HI experiment at Hera is building a neural net trigger which will use 43
calorimeter energy sums to distinguish physics signals from beam gas, etc.60 This
experiment is just coming online.

5. Acknowledgements
The author wishes to acknowledge the work of all those from whom he has borrowed in
order to prepare this tutorial. Many of the figures have been taken directly from the work of
others for demonstrative purposes. Thanks to F. Fogelman-Soulie, C.S. Lindsey, and to my
CDF colleagues for helpful comments and suggestions.

6. References

1. D.E. Rumelhart, G.E. Hinton, and J.L. McClelland, Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Vol. 1, MJT Press, Cambridge, Ma, 1986.

2. see, for example, R. 0. Duda and P. E. Hart, Pattern Classification and Scene Analysis,
John Wiley and Sons, New York, 1973; also,

J.B. Hampshire and B. Pearlmutter, ‘Equivalence Proofs for Mulit-Layer Perceptron
Classifiers and the Bayesian Discriminant Function”, Proceedings of the 1990 Connectionisi
Models Summer School, Touretzky, Elman, Sejnowski, Hinton, Eds., San Mateo,
California: Morgan Kaufman, 1990.

3. L. Ganido and V. Gaitan, Use of Neural Nets to Measure the Tau Polarization and its
Bayesian Interpreration, UAB-LFAE-91-04, April, 1991, Universitat Autonoma de
Barcelona preprint, submitted to International JOWMI of Neural Systems.

4. D. Conner, “Data Transformation Explains the Basics of Neural Networks”, EDN
Magazine, May 12.1988.

5. L. Gupta, A. Upadhye, B. Denby, and S.R. Amendolia, “Neural Network Trigger
Algorithms for Heavy Quark Event Selection in a Fixed Target High Energy Physics
Experiment”, Fermilab-Pub 91/l 17, submitted to Pattern Recognition.

6. Herman Haggerty, private communication.

7. B. Denby, Computer Physics Communications, 49 (1988) 429. Also, B. Denby “Neural
Network and Cellular Automota Algorithms”, Florida State University preprint FSU-SCRJ-
88-141, June, 1988. Tallahassee, Florida.

8. C. Peterson, Nucl. Inst. & Meth., A279 (1989) 537.

9. G. Stimpfl-Abele and L. Ganido “Fast Track Finding with Neural Nets”, UAB-LFAE
90-66, submined to Computer Physics Communications, 1990.

10. B. Denby and S. Linn, Computer Physics Communications 56 (1990) 293.

11. C. Peterson, “Neural Networks and High Energy Physics”, Proc. of the International
Workshop on Software Engineering, Artificial Intelligence and Expert Systems for High
Energy and Nuclear Physics, Lyon Villeurbanne, France, March, 1990, eds. D. Pet-ret-Gallix
and W. Woijcik, Editions du CNRS (Paris 1990).

12. C. Peterson and B. Soderberg, “A New Method of Mapping Optimization Problems
onto Neural Networks”, International Journal of Neural Systems 1(1989) 3.

13. M. Gyulassy and M. Harlander, Computer Physics Commmunications 66 (1991) 31.

14. M. Ohlsson, C. Peterson, and A. Yuille, “Track Finding with Deformable Templates -
The Elastic Arms Approach”, Lund University Preprint LU TP 91-27. November 1991,
Lund, Sweden, submitted to Computer Physics Communications.

15. B. Denby et al., IEEE Trans. Nucl. Sci. 37 No. 2 (1990) 248.

16. B. Badgett et al., CDF Internal Note 1310, “A Pattern Recognition Level-2 B Trigger at
CDF in 1991”, CDF Collaboration, Fermi National Accelerator Laboratory, Batavia, Illinois.

17. A. Cherubini and R. Odorico, “Identification by Neural Networks and Statistical
Discrimination of New Physics Events at High Energy Colliders”, in Proc. ofthe workshop
Neural Nehuorks: From Biology to High Energy Physics, Elba International Physics Center,
Isola d’Elba, Italy, June 5-14, 1991, ETS Editrice, Pisa.

18. Mimetics, S.A., 5 Cenuale Part, Avenue Sully Prudhomme, 92298 Chatenay Malabry,
France.

19. NeuralWare Inc., Sewickley, Pennsylvania.

20. California Scientific Software, Grass Valley, California.

21. NeuroDynamX Inc., Boulder, Colorado.

22. Intel Corporation, Santa Clara, California.

23. NT-ROUTINES is the Fermilab simulator. Send mail to denby@fnal.

24. JBTNET. Send mail to thepd@seldc52 (University of Lund, Sweden).

25. B. Denby et al., CDF Internal Note 1538, “Proposal for a Level-2 Isolated Plug Electron
Trigger for the 1991/1992 Run”, CDF Collaboration, Fermi National Accelerator Laboratory,
Batavia, Illinois.

26. B. Denby, E. Lessner, and C.S. Lindsey, Proc. 1990 Conf. on Computing in High
Energy Physics, Santa Fe, NM, (1990) AIP Conf. Proc. 209 211.

27. C.S. Lindsey and B. Denby, i&cl. Insr. & Mesh. A302 (1991) 217.

28. C. S. Lindsey, “Tracking and Vertex Finding in Drift Chambers with Neural
Networks”, in Proc. of the workshop Neural Networks: From Biology fo High Energy
Physics, Elba International Physics Center, Isola d’Elba, Italy, June 5-14, 1991, ETS
Editrice, Pisa.

29. C.S. Lindsey, B. Denby, H. Haggerty, K. Johns, “Real Time Track Finding in a Drift
Chamber with a VLSI Neural Network”, Fermilab-Pub-92/55, accepted for publication in
Nucl. Inst. & Meth. A.

30. B. Denby “Status of Neural Net Triggers at Fermilab Tevatron”, to appear in the
Proceedings of the Second Inrernarional Workshop on Sojiware Engineering, Anificial
Intelligence, and Expert Systems for Nuclear and High Energy Physics, La Blonde les
Maures, France, January 1992, World Scientific.

31. L. Lonnblad, C. Peterson, and T. Rognvaldsson, Phys. Rev. Letters 65 (1990) 1321.

32. L. Lonnblad, C. Peterson, and T. Rognvaldsson, Nucl. Physics B349 (1991) 675.

33. P. Bhat, L. Lonnblad, K. Meier, K. Sugano, “Using Neural Networks to Identify Jets
in Hadron Hadron Collisions”, Proc. of the 1990 Summer Study on High Energy Physics -
Research Directions for the Decade, Snowmass, Colorado, June 25 - July 13, 1990.

34. I. Csabai, F. Czako, 2. Fodor, “Combined Neural Network-QCD Classifier for Quark
and Gluon Jet Separation”, CERN Preprint CERN-TH.6038/91 and Eotvos University
(Budapest) Institute for Theoretical Physics preprint ITP-Rep. Budapest 483, March, 1991.

35. S. Bianchin, M. Denardi, B. Denby, M. Dickson, G. Pauletta, L. Santi, and N. Wainer,
“Classification of Jets from PPbar Collisions at Tevatron Energies”, to appear in the
Proceedings of the Second International Workshap on S&ware Engineering, Arrificial
Intelligence, and Experr Systems for Nuclear and High Energy Physics, La Londe les
Maures, France, January 1992, World Scientific,, and CDF Internal Note 1706.

36. G. Stimpfl-Abele and Lluis Ganido, “Recognition of Decays of Charged Tracks with
Neural Network Techniques”, Universite Blaise Pascal preprint, Clermont-Ferrand, France,
submitted to Cornpurer Physics Communications, May 1991.

37. J. Proriol et al., “Tagging B Quark Events in Aleph with Neural Networks”, in Proc. of
rhe workshop Neural Networks: From Biology to High Energy Physics, Elba International
Physics Center, Isola d’Elba, Italy, June 5-14, 1991, ETS Editrice, Pisa.

38. C. Bortolotto et al., “A Measurement of the Partial Hadronic Widths of the ZO Using
Neural Networks”, in Proc. of the workshop Neural Networks: From Biology $0 High
Energy Physics, Elba International Physics Center, Isola d’Elba, Italy, June 5-14, 1991,
ETS Editrice, Pisa.

39. N. De Groot and M. Los, “B-Tagging in Delphi with a Feed-Forward Neural
Network”, in Proc. of the workshop Neural Networks: From Biology to High Energy
Physics, Elba International Physics Center, Isola d’Elba, Italy, June 5-14, 1991, ETS
Ediaice, Pisa.

40. T. D. Gottschalk and R. Nolty, “Identification of Physics Processes Using Neural
Network Classifiers”, Caltech Report CALT-68- 1680, 1991.

41. L. Bellantoni, J.S. Conway, J.E. Jacobsen, Y.B. Pan, Sau Lan Wu, “Using Neural
Networks with Jet Shapes to Identify b Jets in e+e.- Interactions”, CERN-PPE/91-80, 24
May 1991, submitted to NIX!. Inst. & Meth.

42. F. Seidel et al., “Extensive Studies on a Neural Networks for b Tagging and
comparisons with a Classical Method”, to appear in the Proceedings of rhe Second
International Workshop on Sojiware Engineering, Artificial Intelligence, and Expert Systems
for Nuclear and High Energy Physics, La Londe les Mautes, France, January 1992, World
Scientific.

43. P. Branchini, M. Ciuchini, and P. Del Giudice, “B Tagging with Neural Networks: An
Alternative use of Single Particle Information for Discriminating Jet Events”, to appear in the
Proceedings of the Second Inrernational Workshop an Software Engineering, Artificial
Inrelligence, and Expert Systems for Nuclear and High Energy Physics, La Londe les
Maures, France, January 1992, World Scientific, and INFN-ISS 92/l.

44. B. Brand1 et al., “Tagging of Z Decays into Heavy Quarks in the Aleph Detector using
Multivariate Analysis Methods: Neural Networks, Discriminant Analysis, Clustering”, to

appear in the Proceedings of the Second International Workshop on Sojiwat-e Engineering,
Artificial Intelligence, and Expert Systems for Nuclear and High Energy Physics, La Londe
les Maures, France, January 1992. World Scientific.

45. T. Altherr et al., “Cerenkov Ring Recognition using Adaptable and non-Adaptable
Networks”, to appear in the Proceedings of the Second International Workshop on So&are
Engineering, Artificial Intelligence, and Expert Systems for Nuclear and High Energy
Physics, La Londe les Maures, France, January 1992, World Scientific.

46. N. de Groot et al., “Pion/Kaon Separation with Neural Networks”, to appear in the
Proceedings of the Second International Workshop on Software Engineering, Artificial
Intelligence, and Expert Systems for Nuclear and High Energy Physics, La Londe les
Maures, France, January 1992,World Scientific.

47. P. Silva and J. Varela, “Identification of the Quark Jet Charge Using Neural Networks”,
in Proc. of the workshop Neural Networks: From Biology to High Energy Physics, Elba
International Physics Center, Isola d’Elba, Italy, June 5-14, 1991, ETS Editrice, Pisa.

48. C. Bortolotto et al., “A Measurement of the Partial Hadronic Widths of the Zft using
Neural Networks”, in Proc. of the workshop Neural Networks: From Biology to High
Energy Physics, Elba International Physics Center, Isola d’Elba, Italy, June 5-14, 1991,
ETS Editrice, Pisa.

49. T. Alexopoulos, “Resonance Searches using a Neural Network Technique”, talk at DPF
91, Vancouver, Canada, August 1991, submitted to proceedings, also T. Alexopoulos,
Ph.D. Thesis, University of Wisconsin, unpublished.

50. L. Lonnblad, C. Peterson, and T. Rognvaldsson, “Mass Reconstmction with a Neural
Network”, Lund University preprint LU TP 91-25, October 1991, submitted to Physics
Letters B.

51. F. Fogelman Soulie, “Neural Networks for Pattern Recognition”, to appear in the
Proceedings of the Second International Workshop on Sofiware Engineering, Artificial
Intelligence, and Expert Sysrerns for Nuclear and High Energy Physics, La Londe les
Maures, France, January 1992,World Scientific.

52. L. Lonnblad, C. Peterson, H. Pi, and T. Rognvaldsson, “Self Organizing Networks for
Extracting Jet Features”, Lund University preprint LU TP 91-4, March 1991, submitted to
Computer Physics Communications.

53. B. Denby, “Neural Network Tutorial for High Energy Physicists”, Proc. of rhe
International Workshop on Software Engineering, Artificial Intelligence and Expert Systems
for High Energy and Nuclear Physics, Lyon Villeurbanne, France, March, 1990, eds. D.
Perret-Gallix and W. Woijcik, Editions du CNRS (Paris 1990).

54. Intel 80170NX Electrically Trainable Analog Neural Network, Intel Corporation, Santa
Clara, California.

55. B. Boser, E. Sackinger, ATT Holmdel, “An Analog Neural Network Processor with
Programmable Network Topology”, International Solid State Circuits Conference, Ferbruary
14, 1991, paper TPM 11.3.

56. Adaptive Solutions Inc., Beaverton, Oregon.

57. Neural Semiconductor Inc., Carlsbad, California.

58. Oxford Computer Company, Oxford, Connecticut.

59. M. Former, “Analog Neural Networks in an Upgraded Muon Trigger for the DO
Detector”, to appear in the Proceedings of the Second International Workshop on Software
Engineering, Artificial Intelligence, and Expert Systems for Nuclear and High Energy
Physics, La Londe les Maures, France, January 1992, World Scientific.

60. P. Ribarics et al., “Neural Network Trigger in the Hl Experiment”, in Proc. of the
workshop Neural Networks: From Biology to High Energy Physics, Elba International
Physics Center, Isola d’Elba, Italy, June 5-14, 1991, ETS Editrice, Pisa.

